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A B S T R A C T

Influenza A virus (IAV) shows an extensive host range and rapid genomic variations, leading to continuous
emergence of novel viruses with significant antigenic variations and the potential for cross-species transmission.
This causes global pandemics and seasonal flu outbreaks, posing sustained threats worldwide. Thus, studying all
IAVs' evolutionary patterns and underlying mechanisms is crucial for effective prevention and control. We
developed FluTyping to identify IAV genotypes, to explore overall genetic diversity patterns and their restriction
factors. FluTyping groups isolates based on genetic distance and phylogenetic relationships using whole genomes,
enabling identification of each isolate's genotype. Three distinct genetic diversity patterns were observed: one
genotype domination pattern comprising only H1N1 and H3N2 seasonal influenza subtypes, multi-genotypes co-
circulation pattern including majority avian influenza subtypes and swine influenza H1N2, and hybrid-circulation
pattern involving H7N9 and three H5 subtypes of influenza viruses. Furthermore, the IAVs in multi-genotypes co-
circulation pattern showed region-specific dominant genotypes, implying the restriction of virus transmission is a
key factor contributing to distinct genetic diversity patterns, and the genomic evolution underlying different
patterns was more influenced by host-specific factors. In summary, a comprehensive picture of the evolutionary
patterns of overall IAVs is provided by the FluTyping's identified genotypes, offering important theoretical
foundations for future prevention and control of these viruses.
1. Introduction

Influenza A virus (IAV) is a negative-sense single-stranded RNA virus
with eight genomic segments, resulting in over 130 reported IAV sub-
types (Pineo, 2021). Rapid genomic mutation and frequent reassortment
constantly give rise to new viruses (Barrat-Charlaix et al., 2021; Du Toit,
2023; Müller et al., 2020; Yang et al., 2022), enabling them to infect
various hosts (Ciminski et al., 2021; Ganti et al., 2022) and cause sig-
nificant global impacts (Ali and Cowling, 2021; Krammer et al., 2018).
For instance, the H1N1 pandemic in 2009 resulted from a triple reas-
sortant virus, causing 1.4 billion infections and 151,700 to 575,400
deaths (Waters et al., 2021). Seasonal flu epidemics cause 3 to 5 million
severe cases and 290,000 to 650,000 deaths worldwide annually,
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according to a report from the World Health Organization (WHO
Working Group, 2023).

Understanding IAVs' genetic diversity is crucial for evolutionary
analysis, risk assessment, source tracing, and vaccine recommendation
(Borkenhagen et al., 2021; Carter et al., 2016; Gao et al., 2013; Naguib
et al., 2019; Patrono et al., 2022; Ping et al., 2018; Shi et al., 2018;
Zaraket et al., 2015). Previous studies have revealed significant scientific
findings. For example, it has been determined that the H7N9 virus
infecting humans in 2013 originated from genomic reassortments be-
tween the original H7N9 and H9N2 viruses (Gao et al., 2013). Research
on the genotypes of H7N9 viruses in chickens and ferrets highlighted a
narrow bottleneck limiting avian-to-mammalian transmission (Zaraket
et al., 2015). Furthermore, broadly reactive hemagglutinin vaccines for
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H5N1 and H1N1 were designed using the computationally optimized
broadly reactive antigen strategy also based on genetic diversity analysis
(Carter et al., 2016; Ping et al., 2018). However, these studies mainly
focused on specific IAV subtypes, neglecting systematic analysis of
overall IAV genetic diversity dynamics.

The intricate evolution of IAVs is influenced by factors like diverse
subtypes, hosts, and rapid genomic variations. Avian influenza virus (AIV)
can jump to new species and occasionally acquire human-to-human
transmission (Long et al., 2019). Different subtypes can reassort and
generate novel viruses within the same host (Ganti et al., 2022). Moreover,
IAVs of the same subtype undergo fast antigenic mutation, allowing im-
mune evasion in hosts (Medina and García-Sastre, 2011). Current evolu-
tionary studies tend to focus on specific viruses, resulting in a limited and
potentially biased understanding of the overall picture. Thus, systematic
research is necessary to explore the genetic patterns of overall IAVs.

Previous studies on IAV genetic diversity often categorized viruses
into genotypes based on genetic differences from large-scale data
(Yamayoshi and Kawaoka, 2019). Genetic clustering methods include
phylogenetic-based and genetic distance-based approaches (Dong et al.,
2020; Poon, 2016). Phylogenetic methods analyze phylogenetic re-
lationships in trees or networks, considering additional data such as
epidemiological data (Han et al., 2019a, 2019b; Ji et al., 2022; Prosperi
et al., 2011; Ragonnet-Cronin et al., 2013; Tan et al., 2019; Wu et al.,
2013). However, the validity and complexity involved in constructing
phylogenetic relationships pose limitations on genomic classifications.
Genetic distance methods quickly partition sequences without trees or
networks, requiring fewer calculations (Han et al., 2019a, 2019b; Pros-
peri et al., 2011; Ragonnet-Cronin et al., 2013; Tan et al., 2019). Yet, they
lack phylogenetic information, affecting identifications for complex
events like reassortments. A valid genomic clustering strategy for
studying virus evolution based on genotypes remains missing.

To address these challenges, we developed FluTyping, which clas-
sifies each isolate of all IAVs based on distinct genotypes identified with
different genomic segment clusters (Fig. 1A). Both genetic distances and
phylogenetic relationships (Fig. 1B) define these classifications together,
providing a macro perspective of IAVs' genetic diversity. Our study re-
veals three distinct diversity patterns, each with different influenza
subtypes. We explore factors influencing these patterns, considering
epidemiological and genomic evolution aspects. In summary, this study
unveils valid genotypes, enabling quick tracing of emerging viruses and
early warning for potential influenza outbreaks.

2. Methods and materials

2.1. Data collection and processing

The genomic sequences of 340,862 influenza A strains, collected
before January 1, 2023, were obtained from the Global Initiative on
Sharing All Influenza Data (GISAID) database (Elbe and
Buckland-Merrett, 2017). To ensure data quality, we performed four
steps of sequence preprocessing.

Firstly, we removed genomic sequences with a length that deviated
from the standard length of the corresponding gene by more than 10%.
Additionally, sequences containing ambiguous bases (i.e., bases that
were not "a", "t", "c", or "g") greater than 1% of the sequence length were
also excluded. Secondly, in cases where there were duplicate strain IDs,
we retained only the sequences with the least number of ambiguous bases
and the minimal difference in length from the standard length of the
corresponding gene. Thirdly, we kept only the sequences from strains
with explicit subtype, collection year, country, and host information.
Lastly, we focused on the whole genomic sequences containing PB2, PB1,
PA, HA, NP, NA, M, and NS genes for our analysis.

After these preprocessing steps, a total of 133,249 whole genomes
of influenza A virus were selected for further analysis. This dataset
constitutes the basis for our study on the genetic diversity patterns of
influenza A viruses using our FluTyping method.
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2.2. Framework for FluTyping

The FluTyping pipeline consists of three main steps: clustering,
phylogenetic calibration, and genotyping.

In the clustering step, the genomic sequences of all IAVs are
semi-automatically grouped into distinct phylogenetic classes based on
each genomic segment. For all influenza virus genomic sequences,
representative sequences for each genomic segment were acquired based
on their collection years, countries, and pairwise sequence similarity
primarily. Subsequently, specific clusters of representative sequences
were organized using average intra-MCU sequence similarity, entropy
change post combining MCUs, and the overlap of unit-specific genomic
loci in the MCU-based combination. The resulting clusters underwent
further grouping through hierarchical clustering, employing the esti-
mated optimal cluster number. These steps involve analyzing the genetic
distance and phylogenetic relationship between isolates to identify
clusters of related strains. Next, in the phylogenetic calibration step, the
obtained clusters are further optimized to improve the accuracy of the
phylogenetic relationships. Mixed clusters, which contain strains from
different phylogenetic clades, and outliers, which do not fit well into any
cluster, are manually combined to better reflect the true evolutionary
relationships between isolates. The final classification was determined by
sorting the quantity of isolates included in each cluster. For instance, the
category containing the most isolates is designated as 1. Finally, in the
genotyping step, the genotype of each isolate was ascertained by
consolidating the relevant clusters in the sequence of PB2, PB1, PA, HA,
NP, NA, M, and NS genes. For example, the genotype assigned to EPI_-
ISL_69853, represented as 5|2|6|H7.1|3|N7.2|3|1 (Supplementary
Table S1), signifies that the identified clusters of PB2, PB1, PA, HA, NP,
NA, M, and NS genomic segments for EPI_ISL_69853 are 5, 2, 6, H7.1, 3,
N7.2, 3, and 1, respectively. This genotype represents the overall genetic
characteristics of the isolate and helps in understanding the evolutionary
patterns of influenza A viruses.

The clustering and genotyping steps are implemented using self-
written Perl scripts, and the details of the methodology have been pub-
lished in https://github.com/dingxiao8715/FluTyping. These scripts are
designed to handle large-scale genomic data efficiently and accurately
identify the genotypes of IAVs based on the combined information from
the clustering and phylogenetic calibration steps.

2.3. Clustering pipeline in FluTyping

The clustering step in FluTyping involves three procedures: the
epidemiological combination, the MCU-based combination, and the
distance-based clustering.

In the epidemiological combination, the genomic sequences are
grouped into multiple clusters based on their collection years and
countries. To reduce bias and computational complexity, representative
sequences are obtained for each cluster using CD-HIT (Li and Godzik,
2006) with specific sequence similarity cutoffs for surface genes (0.5%)
and internal genes (0.1%). Phylogenetic trees are then constructed for
each of the eight genes using FastTree (Price et al., 2009) with the
representative sequences.

In the MCU-based combination step, a bottom-up strategy is
employed, defining inner nodes in the phylogenetic trees as “units” if
they only contain leaf nodes. A node is considered a minimum clade unit
(hereinafter referred to as MCU) if it consists of two units or one unit and
an outlier belonging to that unit. The MCUs are identified in the phylo-
genetic tree, and an MCU can be combined with another MCU if specific
criteria are met (Supplementary Fig. S1), such as high average sequence
similarity (>0.99), minimal change in entropy (<0.01), and no shared
specific genomic loci between different units. The parameters and their
cutoff values for these criteria are determined through “Quantifying
Genetic Heterogeneity Among MCUs” and “Optimizing Cutoff Value
Selection” sections. The MCU-based combination continues until no
further combination is possible. The converged MCUs are then clustered

https://github.com/dingxiao8715/FluTyping


Fig. 1. Overall methodological framework and performance evaluation of FluTyping. A The research motivation of this study. We developed FluTyping and estab-
lished a comprehensive genotype targeting all subtypes of influenza A virus. Using this genotype, we explored the genetic patterns of influenza A virus at a
macroscopic level, such as the temporal distribution of different genotypes for specific subtype shown in A. B Framework for FluTyping. Input consists of sequences
from all genomic segments of influenza A viruses, which undergo clustering, phylogenetic calibration, and genotyping steps. Finally, a specific genotype will be
assigned to each isolate. C Comparison of classification between of nomenclature and in FluTyping of the H1 subtype in phylogenetic trees. D Validating FluTyping by
identifying reassortment events using the FluReassort database.
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based on their genetic distance, and the optimal number of clusters is
estimated using the Bayesian Information Criterion (BIC) via the R
package mclust (Scrucca et al., 2016). Finally, hierarchical clustering is
applied to obtain the distance-based clusters with the estimated number.

After the hierarchical clustering, mixed clusters (containing strains
from different clusters) and outliers (clades with only one strain) may
occur. To optimize the clusters based on phylogenetic relationships,
manual combination of these abnormal types of clusters is performed
using information from the phylogenetic tree. The counts of remaining
categories for various genomic segments after each process in FluTyping
were presented in the supplementary material (Supplementary Table S2).

2.4. Quantifying genetic heterogeneity among MCUs

In the MCU-based combination process of FluTyping, each MCU
represents a phylogenetic clade containing a set of genetic sequences.
The genetic heterogeneity within each MCU is evaluated using three
parameters: the average intra-MCU sequence similarity, the entropy
change after combining MCUs, and the overlap of unit-specific genomic
loci.

The average intra-MCU sequence similarity is calculated as the mean
genetic distance between each pair of sequences within the MCU. This
measure gives an indication of how closely related the sequences are to
each other within the clade.

For the entropy change, the entropy of each unit within the MCU is
calculated using equation 1:

Eunit ¼ 1
l

Xl

i¼1

Esite ¼ �1
l

Xl

i¼1

X

b2fa;t;c;gg
pis log2pis

the length of the alignment, denoted as "l", represents the genomic sites
utilized for calculating entropy. The proportions of specific nucleotides
(a, t, c, and g) at site "i" are represented by pis , where "s" corresponds to
each nucleotide type.

The change in entropy, denoted asΔE, is then computed as the sum of
the differences between the entropy of the combined MCU and the en-
tropy of each unit within the MCU, according to equation 2. This value
represents how much the genetic diversity changes when the MCUs are
combined.

ΔE¼
Xn

i¼1

EMCU � EUnitðiÞ

Finally, the overlap of unit-specific genomic loci is assessed by
determining the identical genomic loci shared among different units
within the MCUs. This parameter helps assess whether the MCUs contain
sequences that are distinct from each other or if there is significant
overlap in their genetic content.

By evaluating these three parameters, FluTyping determines whether
to combine MCUs to optimize the clustering process and improve the
accuracy of genotype assignment for each strain based on its genetic
characteristics.

2.5. Optimizing cutoff value selection

To determine the cutoff values for the three parameters (average
intra-MCU sequence similarity, entropy change, and overlap of unit-
specific genomic loci), a comprehensive assessment was conducted
using the nomenclature of the H1, H3, and H5 subtypes of influenza
viruses.

Representative strains of the H1 and H3 subtypes were obtained from
the nextstrain webserver until November 1, 2022 (https://nextstrain.org/)
(Hadfield et al., 2018), and their genomic sequences were downloaded
from the GISAID database (Elbe and Buckland-Merrett, 2017). Similarly,
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the H5 genomic sequences were obtained from the GenBank database
based on previous studies (Benson et al., 2013; Smith and Donis, 2015;
WHO/OIE/FAO H5N1 Evolution Working Group, 2012, 2009; World
Health Organization/World Organisation for Animal Health/Food and
Agriculture Organization (WHO/OIE/FAO) H5N1 Evolution Working
Group, 2014).

To ensure the universal applicability of cutoff values and to evaluate
the computational complexity of our assessments, we selected the clade
with the highest number of sequences at each level of the nomenclature
hierarchy (Supplementary Table S3). We conducted two hundred cal-
culations for each parameter, utilizing randomly selected sets of se-
quences with an increasing sequence number ranging from 5 to 50. Both
intra-clade and inter-clade parameters were calculated two hundred
times. Our objective was to identify an optimal threshold for different
parameters that could differentiate between calculated parameters in
datasets of intra-clade and inter-clades with varying sequence numbers.

As an illustration, consider the 6B clade of the H1 subtype. Intra-clade
parameter assessments were performed using two randomly selected
nonredundant sequence sets within the 6B clade. Conversely, inter-clade
assessments involved two randomly selected sequence sets: one from the
6B clade and the other from different selected clades, each with varying
sequence amounts. This comprehensive approach enabled us to thor-
oughly evaluate performance across diverse scenarios and clades.

Based on the assessments, it was observed that two sets of sequences
from the same clade had no specific genomic loci, while all clades had
specific loci, primarily with different sequence amounts (Supplementary
Figs. S2–S4). As a result, the cutoff value for the overlap of unit-specific
genomic loci was set to 0, indicating that for two sets of sequences to be
considered as part of the same clade if they share more than one specific
genomic locus.

Furthermore, to determine the optimal cutoff combination for the
sequence similarity and the entropy change, the accuracy of all inter-
clades and intra-clade assessments was calculated for various cutoff
values. The sequence similarity was varied from 0.96 to 0.99 with an
interval of 0.01, while the change of entropy was varied from 0.05 to
0 with the same interval. Among the combinations tested, the cutoff
combination of a sequence similarity of 0.99 and an entropy change of
0.01 yielded the highest accuracy of 99.68% (Supplementary Table S4).

Additionally, the distribution of assessment results for different clades
with varying numbers of sequences was also shown in Supplementary
Figs. S2–S10. Based on the analysis, the final cutoff values for the average
intra-MCU sequence similarity and the entropy change after MCU
combining were determined to be 0.99 and 0.01, respectively.

Through these comprehensive assessments, the cutoff values for the
three parameters were determined to be as appropriate as possible,
ensuring the rationality and universality of the MCU combination pro-
cess. These cutoff values play a crucial role in ensuring the accuracy and
reliability of the genotype assignments made by FluTyping for each strain
based on its genetic characteristics.

2.6. Genotype geographic distribution analysis

For the genetic diversity pattern shown multi-genotypes co-circula-
tion, we have selected two representative subtypes, H1N2 and H9N2. The
former primarily infects swine, and swine farming practices exhibit sig-
nificant variations across different continents. The latter has the widest
range of avian hosts. Therefore, these two subtypes are suitable for
studying the correlation between regional transmission constraints and
the formation of genetic diversity pattern. For these two subtypes, we
initially calculated the proportion of each genotype present in different
collection countries. Subsequently, based on this distribution, we utilize
chi-square tests to analyze the differential enrichment distribution of
various genotypes in the ccollection regions. This statistical analysis was
performed using the R language.

https://nextstrain.org/
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2.7. Genomic evolution analysis

For various representative subtypes of influenza viruses, we initially
calculated the dynamic changes in the genomic mutation proportion of
eight gene segments over the years of collection. The objective was to
observe differences in mutation rates among different gene segments
across various influenza virus types. Additionally, we analyzed variations
in selection pressures on nine proteins among different influenza virus
types. This analysis utilized KaKs Calculator 3.0 with theML evolutionary
mode (Zhang, 2022). Visualization of the analysis results was achieved
using the ggplot 2 v3.4.2 package in the R language v4.3.1 (Wickham,
2009).
2.8. Phylogenetic tree construction and visualization

In this study, the construction of all phylogenetic trees was performed
using FastTree v2.1.10 (Price et al., 2009). Prior to tree construction, the
alignment of the analyzed genomic sequences was carried out usingmafft
v7.505 (Katoh et al., 2002), ensuring that the sequences were properly
aligned for accurate tree inference. The resulting phylogenetic trees were
visualized using the R package GGtree v3.8.2 (Yu et al., 2017).

3. Results

3.1. Overview of FluTyping

FluTyping defines a comprehensive set of genotypes for all IAVs based
on both genetic distance and phylogenetic relationships between isolates.
The process involves three main steps: clustering, phylogenetic calibra-
tion, and genotyping. In the clustering step, distinct phylogenetic classes
of each genomic segment are semiautomatically clustered using epide-
miological information and evolutionary measures between isolates. The
phylogenetic calibration step manually combines mixed clusters and
outliers based on the phylogenetic topological structure. Finally, each
isolate is assigned a specific genotype by combining optimized clusters of
eight genes in the genotyping step. The algorithm implementation and
parameter selection of FluTyping are detailed in the “Methods and Ma-
terials” section.

To validate the genotypes for studying the genetic diversity of IAV,
the performance of the classifications of each gene in FluTyping was
evaluated. On the one hand, the classifications of viral HA genomic se-
quences of seasonal influenza A viruses (H1N1 and H3N2 subtypes) and
avian influenza virus (H5N1 subtype) were compared to the corre-
sponding nomenclatures. As shown in Fig. 1C and Supplementary
Fig. S11, the sequences of H1, H3 and H5 subtypes were classified into
only two, three and one categories in FluTyping. Although FluTyping
provided rougher classifications compared to the specific nomenclatures,
it corrected unreasonable phylogenetic classifications in the nomencla-
tures. For instance, the 6B.1A.6 clade of H1 subtype was in the bottom of
the corresponding phylogenetic tree constructing with all H1 nomen-
clative clades. Nonetheless, a cluster of the H1N1 isolates was also
identified as the 6B.1A.6 clade distributing in the top of the phylogenetic
tree, which likely due to the genomic sequences of these isolates had
most mutations of the specific loci of 6B.1A.6 clade. Whereas, FluTyping
accurately identified abnormal clades as individual clades, unlike the
nomenclature-based classifications.

Additionally, the determination of homology between genomic se-
quences was employed to assess the validity of the genomic classifica-
tions in FluTyping. About 796 pairs of homologous genomic sequences
from the FluReassort database, representing comprehensive reassort-
ment events of IAV, were used for this evaluation (Ding et al., 2020).
FluTyping classified 773 pairs of sequences into the same class, only 23
pairs of sequences showed different phylogenetic relationships compared
to previous studies, confirming its ability to characterize distinct phylo-
genetic relationships of IAV genomic sequences effectively (Fig. 1D).
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These two assessments demonstrated the reliability of FluTyping in
assigning genotypes to IAVs.

Overall, FluTyping proves to be a valuable tool for studying the ge-
netic diversity of IAVs, allowing for a more comprehensive understand-
ing of their evolutionary patterns, potential sources, and early detection
of emerging viruses.

3.2. Landscape of genetic diversity of influenza A virus

With the distinct classes of eight genomic segments, FluTyping
identified a total of 1698 genotypes for all IAV subtypes. However, 1061
of these genotypes had no more than three isolates, likely due to the
emerging genotypes lacking a competitive advantage in the competition,
leading to their elimination and failure to become prevalent. Apart from
the potential low-adaptation genotypes, the majority genotypes (208/
637) contained between 10 and 50 isolates, as shown in the Supple-
mentary Tables S5–S6. The genotypes belonging to different subtypes
were clustered in distinct clades in the phylogenetic tree constructed
using the whole genome of all IAVs, confirming the rationality of genetic
differences between genotypes identified by FluTyping (Fig. 2A).

For clarity, only the genotypes containing more than ten isolates were
utilized to describe the landscape of genotypes, which involved 64
influenza subtypes. The isolates in these genotypes were collected from
1905 to 2022 and originated from 175 countries across six continents. As
depicted in Fig. 2B, Supplementary Fig. S12, and Supplementary
Table S7, the H3N2 subtype had the highest number of isolates (63,915)
but only 20 identified genotypes, ranking fourth among all subtypes. In
contrast, avian influenza H9N2 and H3N8 had both recognized 22 ge-
notypes, with only a few thousand isolates each. The years 2015 and
2016 exhibited the highest genotype diversity, with 165 genotypes
collected during this period. However, from 2016 to 2022, the diversity
of genotypes decreased steadily. In 2022, a total of 23,118 isolates were
collected, but only 41 genotypes were identified. In terms of collection
regions, the United States and China took the top two positions, exhib-
iting the highest diversity in genetic types and the largest pool of isolates.
Notably, the greater diversity of avian hosts led to a higher count of
identified genotypes from avian sources (274) compared to other hosts.
This underscores the significant role of avians in influencing the overall
genomic diversity of IAVs. Detailed distribution statistics for all geno-
types can be found in Supplementary Table S7.

The genetic diversity of all IAVs was quantitatively assessed using
various measures, including the proportions of genotypes, the overall
count of identified genotypes, along with the count of newly emerging
genotypes, and the entropy of all genotypes over time. As shown in
Fig. 2C, the genotypes exhibited increasing diversity since the year 2000.
The 2009H1N1 pandemic led to the dominance of a novel genotype,
causing a transient decline in genomic diversity. However, after 2009,
the genotypes continued to become more diverse until around 2015.
Fig. 2D depicts the trend of involving genotypes, showing an overall
increase followed by a continuous decrease. Multiple inconspicuous
peaks in genotype diversity also occurred in certain years, such as 1986,
2002, and 2007. The entropy, which is a measure of diversity, exhibited a
similar trend to the number of genotypes over time. Notably, the entropy
of overall genotypes reached its peak in 2008 and sharply declined
following the 2009H1N1 pandemic. Another peak in entropy occurred in
2020, whereas the number of all genotypes had been continuously
decreasing since its highest peak in 2015.

To determine whether the tendency of genetic diversity change was
influenced by the high proportion of seasonal influenza H1N1 and H3N2
subtypes (which accounted for approximately 70% of all isolates), the
entropy of genotypes without these seasonal influenza human-infection
isolates was also calculated. As shown in Fig. 2D, the difference be-
tween the entropy calculated with (red line) and without (orange line)
the seasonal influenza isolates increased with the proportion of seasonal
influenza isolates. However, the change trend of the two sets of entropy
values remained similar over time, indicating that there was a specific
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change pattern in the genomic diversity of influenza viruses that was not
significantly influenced by sampling bias.

3.3. Three distinct genetic diversity patterns of influenza A virus

To validate the determination of genetic diversity patterns, we
focused on subtypes with more than 500 isolates collected across all
years. This analysis led to the discovery of three distinguishable patterns,
which are presented in Fig. 3: (1) One genotype domination pattern, (2)
Fig. 2. Overview of genotypes identified for IAVs by FluTyping. A Phylogenetic rela
viruses. B Temporal distribution of genotypes containing more than ten isolates fo
genotypes in different years, and circle color reflects the variety of sampled strains c
proportion of genotypes over time. Different genotypes are represented by different c
viruses. The assessments were conducted using the number of identified genotypes (d
influenza viruses with and without seasonal influenza based on the proportion of ge
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Multi-genotypes co-circulation pattern, and (3) Hybrid-circulation
pattern. In general, representative subtypes formed distinct clades in
the phylogenetic tree constructed using the whole genome (Fig. 3D).

The first pattern, characterized by one genotype domination,
included only the seasonal influenza viruses of H1N1 and H3N2 sub-
types. This pattern showed that a single genotype consistently dominated
over a period of years, as depicted in Fig. 3A. The second pattern, rep-
resented by multiple genotypes co-circulation, included the swine H1N2
subtype and several representative subtypes of avian influenza, such as
tionships and subtype distributions based on the whole genome of all influenza
r representative subtype. Circle size represents the number count of identified
ount. C Temporal analysis of genetic diversity in influenza viruses based on the
olors. D Quantitative assessment of genetic diversity dynamics in all influenza A
ark blue), the number of emerging genotypes (light blue), and the entropy of all
notypes (red and orange lines, respectively).
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H9N2, H3N8, H4N6, etc. In this pattern, multiple genotypes were prev-
alent simultaneously, and there was no individual genotype dominating
the subtypes, as shown in Fig. 3B. The third pattern was a mixture pattern
of prevalence and included subtypes such as H7N9, H5N1, H5N6, and
Fig. 3. Three distinct genetic patterns of influenza A virus. A Genetic diversity of H3N
seasonal influenza viruses of H1N1 and H3N2 subtypes. B Genetic diversity of swine H
This pattern includes the swine H1N2 subtype and several representative subtypes o
subtype, exhibiting the third pattern of multi-patterns mixture. This pattern includes s
with different genetic diversity patterns on the phylogenetic tree constructed from t
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H5N8. For instance, Fig. 3C illustrates the case of the H5N1 subtype,
where a dominant genotype circulated until 2013, followed by the
emergence of different genotypes that co-circulated up to 2022. The
temporal distribution of genotypes for various influenza subtypes within
2 subtype, exhibiting the first pattern of one genotype domination, includes only
1N2 subtype, exhibiting the second pattern of multiple genotypes co-circulation.
f avian influenza, such as H9N2, H3N8, H4N6, etc. C Genetic diversity of H5N1
ubtypes such as H7N9, H5N1, H5N6, and H5N8. D Distribution of virus subtypes
he whole genome.
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each genetic diversity pattern is illustrated in Supplementary Figs. S13
and S14.

3.4. Transmission restriction on genetic diversity

Certainly, identifying the factors that contribute to the distinct pat-
terns of genomic diversity in IAVs is a significant scientific challenge.
One key observation is that seasonal influenza viruses are epidemic
globally, while swine and avian influenza viruses tend to be endemic.
Furthermore, these two classes of influenza viruses exhibit different ge-
netic diversity patterns. Based on this, we hypothesized that the genetic
diversity of specific influenza viruses is influenced by their mode of
transmission. To validate this hypothesis, we conducted statistical ana-
lyses on the distributions of genotypes in representative swine and avian
influenza viruses according to their collection regions.

As shown in Fig. 4A and C, for some genotypes, there was a significant
prevalence in a single country, with the proportion of the genotype being
more than 75%, and the chi-square test resulting in a P-value less than
0.01. For example, the G4 genotype of the H1N2 subtype and the G1
genotype of the H9N2 subtype showed strong prevalence in specific
countries. However, there were also genotypes, like the G1 of the H1N2
viruses, that were epidemic in multiple countries. To investigate whether
different communities of viruses circulating in specific countries were
present within these genotypes, we examined the distribution of isolates
collected from different countries in the phylogenetic tree based on the
whole genome. As seen in Fig. 4B, the isolates belonging to the G1 ge-
notype of the H1N2 subtype primarily circulated in four countries
(France, Germany, Spain, and the United Kingdom), and they formed
distinct phylogenetic clades in the tree. Similarly, the isolates of the G10
genotype of H9N2 virus (Fig. 4D) were clustered in different phyloge-
netic clades based on the countries from which they were collected. As is
well known, both pigs and poultry are part of confined farming methods.
Additionally, wild birds only inhabit specific areas, with migratory pro-
cesses existing solely in certain routes and times, limited to migratory
birds. Therefore, the living areas of most non-human influenza host
species are restricted. In contrast to human communal living and
convenient transportation, the spread of influenza viruses is greatly
constrained. As a result, some viruses with genotypes infecting pigs and
poultry may only prevail in specific regions, unable to disseminate to
other areas, thereby forming a model of genetic diversity with multiple
genotypes co-circulation. These findings indicate that viral transmission
in swine and avians limits the spread of specific genotypes, likely leading
to the genetic diversity pattern of multiple genotypes co-circulating
simultaneously.

In summary, our results support the hypothesis that the mode of
transmission influences the genetic diversity patterns observed in IAVs.
The restriction of viral transmission within specific regions contributes to
the prevalence of certain genotypes in particular countries, which in turn
shapes the genetic diversity pattern of multiple genotypes co-circulating
within these virus subtypes.

3.5. Genomic evolution underlying genetic diversity

The study delved into the genomic evolutionary driving forces behind
different genetic diversity patterns by analyzing the mutation pro-
portions of different genes and the selection pressure on different pro-
teins over time. Fig. 5A illustrates that the dominant genotype of the
H3N2 subtype exhibited a significant linear increase in mutation pro-
portion across all eight genomic segments over the years. Notably, the
viral surface genes, namely the HA and NA genes, displayed more mu-
tations compared to the internal genes (PB2, PB1, PA, NP, M, and NS
genes). Similar trends were observed for the major genotypes of the
H1N1 subtype, both before and after the 2009 epidemic (Supplementary
Fig. S15).

To investigate whether these mutation rules were specific to the
genetic diversity pattern of one genotype domination, the major
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genotypes of the H1N2, H7N9, H5N1, and H9N2 subtypes were also
studied. Fig. 5B and Supplementary Fig. S15 demonstrate that three
genotypes of the H1N2 subtype showed a similar change trend in mu-
tation proportion compared to seasonal influenza viruses, but the mu-
tations in the eight genes of H1N2 viruses were milder over time when
compared to H1N1 and H3N2 subtypes. Additionally, Fig. 5C and D
reveal that the NP and PB1 internal genes of the H5N1 subtype had
more mutations than the surface genes, which significantly differed
from the H1N2 swine influenza virus and the seasonal influenza viruses.
However, the mutation proportions of all eight genes of the H5N1
subtype increased steadily over time, similar to the H1N2 subtype.
Similar mutation change patterns were also observed in major geno-
types of the H7N9 and H9N2 subtypes (Supplementary Fig. S15).
Furthermore, when comparing the same genotype from human and
avian hosts, the mutation rates displayed a similar change trend over
time for different genes, as seen in H5N1 and H7N9 subtypes (Fig. 5C
and D, and Supplementary Fig. S15).

The study also measured the selection pressures on viral proteins
using the dN/dS ratio calculated by the software of KaKs Calculator 3.0
(Zhang, 2022). Fig. 5E shows that, overall, the surface proteins (HA and
NA) experienced greater selection pressures than the polymerase pro-
teins (PB1 and PB2) and the nucleocapsid protein (NP) across all influ-
enza subtypes. Additionally, the M2 protein in avian influenza viruses
had a higher dN/dS ratio than in H1N2 swine influenza viruses and
seasonal influenza viruses, while the opposite result was observed for the
NS1 protein. Thus, based on genomic evolution analysis, no specific rules
were identified for distinct genetic diversity patterns. However, signifi-
cant differences were observed between influenza viruses with
human/swine hosts and avian hosts.

4. Discussion

Our research differs from previous studies that focused on specific
influenza viruses. Instead, we aimed to uncover common evolutionary
patterns of all IAVs. To address this, we developed FluTyping, a robust
method for identifying each influenza isolate's genotype within the
entire virus population. The genotypes in FluTyping were assigned
based on the classifications of eight genomic segments of overall IAVs,
considering both genomic distance and phylogenetic relationships
between isolates.

In general, the broad evolution analysis may be significantly affected
by sampling bias. To alleviate the problem, an epidemiological combi-
nation of all influenza viruses was primarily employed. In this process,
the genomic sequences of all isolates were clustered based on their
collection years and countries. To further reduce sampling bias, repre-
sentative sequences in each cluster were obtained based on the sequence
similarity.

The classification of genomic sequences is influenced by a variety of
complex factors, and there is currently no universally recognized stan-
dard for assessing its validity. However, in the case of influenza viruses, a
widely accepted nomenclature system in the field involves the classifi-
cation of subtypes H1, H3, and H5. These classification nomenclatures
are primarily based on the distinct phylogenetic partitions, coupled with
sequence similarities, to evaluate differences. Consequently, we have
compared and assessed our genotype classification against these three
established nomenclatures. Comparisons with the nomenclatures of the
HA gene of H1N1, H3N2, and H5N1 subtypes showed FluTyping's clas-
sifications corrected unreasonable clades in phylogenetic trees, likely due
to overly intricate partitions of specific subtypes. Additionally, the
identification of reassortment events in influenza viruses inherently in-
cludes the recognition of homologous gene fragments. Therefore, we
have also conducted a comparative analysis of our classification with
previously acknowledged reassortment events in previous studies to
evaluate the effectiveness of our classification. Results indicated the
classifications of different genomic segments effectively identified most
homologous genomic sequences (773/796) in influenza reassortment



Fig. 4. Geographical circulation in genotypes of influenza A viruses from non-human hosts. A Geographical distribution enrichment analysis of H1N2 swine influenza
viruses from different countries. The circle size represents the proportion of sampled strains for each genotype in the respective collection country. The color indicates
the P-value from the chi-square test, where a deeper red color corresponds to a smaller P-value, indicating a higher enrichment of the genotype in that collection
country. B Distribution of the G1 genotype of the H1N2 swine subtype from different countries on the phylogenetic tree constructed from the whole genome. C
Geographical distribution enrichment analysis of the H9N2 avian influenza viruses from different countries, with the same quantitative indicators as in A. D Dis-
tribution of the G10 genotype of the H9N2 avian subtype from different countries on the phylogenetic tree constructed from the whole genome.
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Fig. 5. Molecular evolution characteristics of different influenza A viruses. A-D, Temporal changes in mutation proportions across eight genomic segments of the
major genotype in H3N2 (A), H1N2 (B), and the two major genotypes of the H5N1 subtype (C and D), respectively. E, Selection pressure on nine proteins of
representative influenza subtypes. The selection pressures of viral proteins for different influenza virus subtypes were assessed by the dN/dS ratio. H5N1_H and
H5N1_NH represent the H5N1 strains sampled from human and non-human hosts, respectively.
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events from credible studies. These results demonstrate FluTyping's
ability to accurately characterize distinct phylogenetic relationships
among influenza isolates.

For isolates containing the complete genome, i.e., the eight genomic
segments, a specific genotype was assigned based on the gene classifi-
cations in FluTyping. However, a larger number of genotypes (1061/
1698) were related to no more than three isolates, resulting from that
these genotypes may lack a competitive advantage in the competition,
leading to their elimination and failure to become prevalent. Therefore,
to ensure the validity of the obtained results, subsequent studies of the
evolutionary pattern of all influenza viruses would employ genotypes
containing enough isolates.
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In summary, genotypes were assembled from various subtypes in the
whole-genome phylogenetic tree. Different genotypes of the same sub-
type were clustered in distinct clades (Fig. 2A), demonstrating that these
genotypes effectively characterize isolate phylogenetic relationships by
influenza subtype. The H3N2 subtype had the highest isolates (63,915)
with 20 genotypes, while the H9N2 subtype had 22 genotypes with 3808
isolates (Supplementary Table S7). This suggests diverse genetic patterns
for different IAV subtypes.

The proportions of different genotypes for subtypeswithmore than 500
isolates were analyzed over time, revealing three distinct genetic diversity
patterns: (1) One genotype domination pattern, (2) Multi-genotypes co-
circulation pattern, and (3) Hybrid-circulation pattern (Fig. 3). The genetic
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diversity pattern dominated by one genotype exclusively comprises sea-
sonal influenza H1N1 and H3N2, while the other two patterns involve
H1N2 swine flu and avian influenza viruses. Notably, swine and avian
influenza viruses exhibit restricted transmission compared to seasonal
influenza viruses. Consequently, we posit that viral transmission plays a
crucial role in shaping distinct genetic diversity patterns across all IAVs,
prompting us to conduct a restriction analysis of viral transmission.

To support this hypothesis, representative avian influenza subtypes
and the H1N2 swine IAV were analyzed to study genotype distribution
preferences across regions. Fig. 4 revealed not all genotypes were
country-specific epidemics for the H1N2 and H9N2 subtypes. For the
genotypes circulating in multiple countries, phylogenetic relationships
between isolates from different countries were explored, showing geno-
types forming distinct sub-groups circulating in specific countries. In
summary, non-seasonal influenza genotypes exhibited high adaptability
to regions, facilitating regional epidemics. In contrast, seasonal flu vi-
ruses were prevalent globally. Thus, varying viral transmission re-
strictions among different IAVs led to diverse genetic diversity patterns.

Moreover, we also explored key factors in IAV genetic diversity,
focusing on molecular evolution. Fig. 5A–D showed higher mutation
rates in HA and NA genes of seasonal IAVs and H1N2 swine IAV
compared to avian influenza viruses. Fig. 5E revealed greater selection
pressure on the NS1 protein in H1N2 and seasonal IAVs, opposite for the
M2 protein. These results suggest the genomic evolution characteristics
of all IAVs are more influenced by host-specific factors than by differ-
ences between genetic diversity patterns. Additionally, Fig. 5C and D
showed similar molecular evolution patterns in avian viruses infecting
humans and avians, indicating the human-infecting avian viruses shared
genotypes with dominant circulating subtypes. This result establishes a
theoretical foundation for understanding and raising awareness about
human infections caused by avian influenza viruses.

Accessing comprehensive genotypes through FluTyping enables sys-
tematic origin tracing and evolutionary analysis of novel and circulating
IAVs. For example, based on the identified genotypes, Supplementary
Fig. S16 analyzed the temporal distribution of different genotypes of
seasonal influenza H1N1 and H3N2 viruses, elucidating their genetic
diversity. In this case, the identification of reassortment events of IAVs is
a crucial scientific problem. In addition, there are many computational
methods developed for identifying the reassortment events of IAVs (Ding
et al., 2021). Based on the genotypes identified by FluTyping, rational
reassortment criteria are formulated, incorporating constraints from
epidemiology, Occam's razor principle, and other factors. This allows us
to infer potential reassortment events for each genotype. Not only can we
retrospectively identify past reassortment events through analytical
analysis, but we can also match genotypes for newly emerging viruses,
thereby speculating on the occurrence of reassortment events. Further-
more, we can identify the molecular characteristics of genes associated
with these dominant genotypes, including specific residues in loci
(Supplementary Fig. S17). Additionally, these findings support devel-
oping models to understand avian influenza evolution in non-human
hosts worldwide, incorporating epidemiological and genomic data.
Enhanced prevention and control measures, especially for avian virus
spillover to humans, can result. Understanding factors driving avian
influenza evolution and transmission dynamics will improve outbreak
prevention and mitigation on human populations.

5. Conclusions

In conclusion, this study investigated the genetic diversity pattern of
all IAVs using our self-developed genotype identification method called
FluTyping. Unlike previous studies that focused on specific individual
subtypes or groups of IAVs, we comprehensively analyzed the assigned
genotypes of each isolate from FluTyping to recognize distinct genetic
diversity patterns across all IAVs. Our in-depth analysis revealed that
viral transmission emerged as the most crucial factor driving the varia-
tions in genetic diversity patterns among overall IAVs. By shedding light
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on the common evolutionary patterns of influenza A viruses, this research
contributes to a deeper understanding of their genetic dynamics and
transmission dynamics, which can be invaluable for devising effective
strategies to combat future influenza outbreaks.
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